Spectral analysis of non-local Schrödinger operators

نویسندگان

  • Yu. Kondratiev
  • S. Molchanov
چکیده

We study spectral properties of convolution operators L and their perturbations H = L+ v(x) by compactly supported potentials. Results are applied to determine the front propagation of a population density governed by operator H with a compactly supported initial density provided that H has positive eigenvalues. If there is no positive spectrum, then the stabilization of the population density is proved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectrum of non-local discrete Schrödinger operators with a δ-potential

The behaviour of the spectral edges (embedded eigenvalues and resonances) is discussed at the two ends of the continuous spectrum of non-local discrete Schrödinger operators with a δ-potential. These operators arise by replacing the discrete Laplacian by a strictly increasing C1-function of the discrete Laplacian. The dependence of the results on this function and the lattice dimension are expl...

متن کامل

Isometries, Fock Spaces, and Spectral Analysis of Schrödinger Operators on Trees

We construct conjugate operators for the real part of a completely non unitary isometry and we give applications to the spectral and scattering theory of a class of operators on (complete) Fock spaces, natural generalizations of the Schrödinger operators on trees. We considerC∗-algebras generated by such Hamiltonians with certain types of anisotropy at infinity, we compute their quotient with r...

متن کامل

Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operators

In this paper, we consider one dimensional adiabatic quasi-periodic Schrödinger operators in the regime of strong resonant tunneling. We show the emergence of a level repulsion phenomenon which is seen to be very naturally related to the local spectral type of the operator: the more singular the spectrum, the weaker the repulsion. Résumé. Dans cet article, nous étudions une famille d’opérateurs...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016